General Operating Rules - Fixed Wing

All aircraft operations will be conducted in accordance with all applicable FAR, local and national laws, manufacturers’ aircraft manuals/limitations and this Manual. Aircraft will be operated in an airworthy condition at all times. Aviation personnel are expected to utilize sound, conservative judgment in their approach to their duties. Safe transportation is the primary objective of the Department.

Flight Crew Check-in and Post-Flight Period

Flight crewmembers shall check-in for domestic flights (North America) no less than one hour and 15 minutes prior to the scheduled departure time. Flight crewmembers shall check-in for international flights (other than North America) no less than two hours prior to scheduled departure time. An earlier check-in time may be designated by the Chief Pilot or by the Trip Captain when, in his/her judgment, the conditions warrant additional time prior to departure.

The post-flight period is assumed to be 30 minutes for domestic flights and one hour for international flights.

Flight Planning

The Trip Captain is responsible for flight planning and related information (i.e. catering, ground transportation, servicing requirements, reservations etc.). He/She may assign this duty to the other pilot but retains the responsibility for the task. There must be no confusion as to which pilot is to do this function.

The pilot accomplishing the flight planning shall make the maximum use of available information and specialized equipment (computer flight planning and commercial weather services) provided by the Department.

Normally, the Trip Captain will fly the first leg as PIC (Captain) when departing a Department base. Subsequent legs shall be alternated in accordance with operational qualifications and by mutual agreement.

Required Publications

Current copies of this manual, Aircraft Maintenance Log (Aircraft Maintenance Log), Deferred Maintenance Log (Deferred Maintenance Log), Minimum Equipment List (MEL) and FAR (J-Aid) must be carried on board each Company aircraft.

Each Company aircraft will carry a current set of aeronautical charts, instrument approach procedure charts for the area of operation and applicable supplemental information.
The charts, FAA-approved aircraft flight manual (AFM) and any applicable supplements and operating handbooks for each aircraft and for installed optional equipment will be provided through a subscription/revision service, as applicable. Each Department aircraft will carry on board a current set of these manuals/handbooks/supplements during all flight operations.

Additional and/or supplemental publications may be obtained as needed. The Chief Pilot must approve all airport-related subscriptions and major purchases of publications.

Weather

Prior to each flight, the PIC will obtain aviation weather reports and forecasts and analyze the following data to determine the effect on the proposed operations:

- Latest NOTAM for the point of departure, route of flight, the destination and the alternate destination.
- Surface weather observations for pertinent stations.
- Forecasts for all pertinent routes and stations.
- Reports or forecasts of severe weather, turbulence or icing which could affect the proposed flight.
- Any known air traffic delays.

Pilots will check weather forecasts sufficiently in advance of a proposed flight and notify Dispatch of any conditions that may affect passenger schedules. This includes checking weather forecasts the night before an early morning scheduled departure. The PIC may delegate some of these duties; however, he/she maintains the responsibility.

Severe Weather and Weather Detection Devices

Flights into areas of known or forecast severe weather will be avoided to the maximum extent possible. When flight is necessary into areas of reported thunderstorms, icing, turbulence, etc., avoidance will be accomplished using visual means, airborne radar and, when available, air traffic control assistance.

An operable weather radar must be installed in the aircraft if operation is planned into areas of known or forecast thunderstorm activity where avoidance cannot be accomplished by visual means.
Each Department pilot making an IFR takeoff, approach, or landing at an airport (domestic or foreign) shall comply with the applicable instrument approach and weather minimums published for that facility.

At airports where weather reporting services are available, Department pilots shall not initiate an instrument approach procedure unless the latest weather report for that airport, reports the visibility at or above the published IFR landing minimums as depicted on the applicable instrument approach procedure chart.

If during an instrument approach that utilizes RVR for landing visibility, the RVR is reported to be below the required minimums before the aircraft has passed the FAF, the approach shall be abandoned and a missed approach shall be executed. If the aircraft is inside of the FAF when the RVR is reported to have gone below minimum conditions, the pilot may continue the approach to DH or MDA.

At airports where weather services are not available, the approach may be initiated and a landing executed if, when reaching the MDA or DH, the weather is found to be at or greater than that specified for the approach.

Department pilots shall not operate an aircraft below the authorized MDA or continue an approach below the authorized DH unless:

- the aircraft is continuously in a position from which a descent to a landing on the intended runway can be made at a normal rate of descent using normal maneuvers, unless that descent rate will allow touchdown to occur within the touchdown zone of the runway of intended landing.

- the flight visibility is not less than the visibility prescribed in the standard instrument approach procedure being used.

- where any necessary visual reference requirements are specified by the FAA Administrator, at least one of the following visual references for the intended runway is distinctly visible and identifiable to the pilot:
 - the approach light system, except that the pilot may not descend below 100 feet above the touchdown zone elevation using the approach lights as a reference unless the red terminating bars or the red side row bars are also distinctly visible and identifiable.
 - the threshold.
 - the threshold markings.
 - the threshold lights.
- the runway end identifier lights (REIL).
- the visual approach slope indicator (VASI).
- the touchdown zone lights.
- the runway or runway markings.
- the runway lights.

Circling Approaches

Department fixed-wing aircraft will be operated to Category D weather minimums during circling approaches.

If, in the case of some international airports, Category D minimums are not listed then the criteria for Category D minimums will be used during circling approaches.

Braking Action Requirements

Aircraft operated by the Department shall not takeoff or land on runways that are covered with ice and/or snow unless a runway condition/braking action report can be obtained prior to operation.

The PIC operating at airports where ice or snow covered runways are reported, or anticipated, must obtain runway condition reports and braking action reports, prior to operating at those airports.

A braking action report must be evaluated with regard to its source, timeliness and changes to be expected with fluctuations in temperature. The reported braking action must be better than nil. Braking action reports of “fair or poor” are acceptable if the runway is into the wind and equals or exceeds the landing field requirement or the balanced field length requirement as defined in the airplane flight manual. Extreme caution should be exercised under these conditions. The PIC’s judgment shall always be the determining factor.

High Minimums Captain

The following restrictions apply to a new Captain who has not completed 100 flight hours as PIC in the make/model/series of aircraft that he/she is assigned to fly or has not completed 50 flight hours as PIC in another type of Department aircraft:

- Takeoff visibility of not less than 1/2 mile (RVR 2400/800 meters)
The DH or MDA and visibility landing minimums must be increased by 100 feet and 1/2 mile respectively. This restriction applies to the destination airport, destination alternate and takeoff alternate.

The runway length of the intended runway must be at least 15% greater than that required by the AFM.

The high-minimums PIC must notify Dispatch as soon as possible when it appears that the known or forecast weather conditions are sufficient for the planned flight.

Second-in-Command Limitations

Pilots who are not designated as Captain for the specific make/model/series of aircraft to be utilized may function as a second-in-command only.

The following restrictions apply to a second-in-command pilot who has not completed 100 hours as SIC in the make/model/series of aircraft that he/she is assigned to fly:

• Make no takeoffs or landings from either seat except for training flights.

• May not fly with a high minimums captain.

A non-type rated SIC who has completed 100 hours as SIC in the make/model/series of aircraft that he/she is assigned to fly may make left seat takeoffs and landings on non-passenger carrying flights when flying with a Standardization Pilot or a pilot designated by the [Position title] when:

• Takeoff visibility is at least equal to or above the minimums for landing listed below.

• The DH or MDA and visibility landing minimums are increased by 100 feet and 1/2 mile respectively. This restriction applies to the destination airport, destination alternate and takeoff alternate.

• The runway length of the intended runway must be at least 15% greater than that required by the AFM.

• The crosswind component is less than 15 knots.

• There is no standing water, slush or loose snow present on the runway.

• The braking action is reported to be good or better.
A type-rated SIC with 100 or more hours may fly from the left seat during passenger carrying flights at the discretion of the PIC for that flight.

NOTE: All flight operations are at the final discretion of the PIC for that flight.

Takeoff Minimums/Takeoff Alternates

Unless lower takeoff minimums are specified on the applicable instrument approach procedure chart, or in this Manual, pilots shall use 1/4 mile (1600 RVR) visibility as a minimum for takeoff on all runways. Airports without an operating control tower must have 1/2 mile or greater visibility for takeoff on all runways. If takeoff minimums are not prescribed for a particular airport, 1 statute mile visibility shall apply for takeoffs under IFR.

In addition to the minimums specified herein, the pilot shall consider all of the factors affecting uncontrolled airport operations. (i.e., other aircraft, animals or personnel on the runway, debris, pavement damage, etc.) and increase the takeoff minimum as necessary. Special attention shall be given to the charted minimum climb rate for obstacle avoidance as applicable.

If weather conditions at the time of takeoff are below the approved landing minimums, pilots will designate a takeoff alternate not more than one hour from the departure airport at normal cruising speed in still air with one engine inoperative. Before takeoff, the pilots shall determine from weather reports, forecasts, and NOTAM that the takeoff alternate is at or above the landing minimums and is expected to remain so for the time period during which the takeoff alternate is required.

Alternate Airport Requirements

Requirements for filing an alternate airport:

- Within the conterminous United States, an alternate airport need not be filed for a destination airport having a standard instrument approach procedure if the ceiling is forecast to be at least 2,000 feet (600 meters) above the destination airport elevation and the surface visibility is forecast to be at least 3 miles (4.8 km) at the destination airport for at least one hour before and one hour after the estimated time of arrival at the destination airport.

- Within the conterminous United States, an alternate airport must be filed for a destination airport not having a standard instrument approach procedure if the ceiling and visibility do not allow descent from the MEA to approach and landing under basic VFR.

- In other countries and Alaska and Hawaii, an alternate airport shall be specified for all destination airports unless the flight is over a route without available alternate
airports for a particular destination airport, and the aircraft has enough fuel to fly to the destination airport and to fly for at least two additional hours at normal cruising fuel consumption.

An airport may not be listed as an alternate airport in the flight plan unless the appropriate weather reports or forecasts, or any combination thereof, indicates that the weather conditions will be at or above the alternate weather minima specified on the applicable instrument approach procedure chart for that particular airport when the flight arrives.

On the Jeppesen instrument approach procedure chart, alternate weather minima are found in the “for filing as alternate” box. When alternate weather minima are not specified for a particular airport, approved minimum weather is:

- For airports having an approach with an electronic glideslope, a ceiling of 600 feet (180 meters) and a visibility of two miles (3200 meters).
- For airports with LOC, VOR, etc., type approaches, a ceiling of 800 feet (240 meters) and a visibility of two miles (3200 meters).
- For airports with no approved instrument approach, a ceiling of at least 1000 feet (300 meters) above the lowest MEA or MOCA and a visibility of at least three miles (4.8 km).

Footnotes on the Jeppesen instrument approach procedure chart for any particular airport may specify additional applicable restrictions for filing the airport as an alternate airport.

In the event of a diversion to an alternate, regular Company and FAR or ICAO minimums become applicable. Rules applicable to high minimum pilots at regular airports apply equally at the alternate in this case.

Noise Abatement

Pilots will adhere to published noise abatement procedures and voluntary curfews except when the safety of flight is involved.

Minimum Runway Requirements

The minimum authorized runway lengths for use by fixed-winged aircraft owned/leased, operated, contracted or chartered by the Company shall;

- equal, or exceed, the balanced field length, as defined by the FAA and found in the AFM, corrected for ambient conditions, and;
The following minimum runway lengths are for Dispatch planning information only and are based on standard day (59°F), sea level, dry runway conditions. Altitude, temperature, runway surface conditions and surface wind direction and velocity will affect performance. Passengers must be advised by Dispatch that changing weather conditions can prohibit operations, reduce payload and range from these airports.

The PIC will be the final authority regarding operations to, from and on any airport. Dispatch must obtain prior approval from the [Position title] for operations at airports with less than:

- [XXXX] feet available for the [aircraft type].
- [XXXX] feet available for the [aircraft type].

Runways must be at least 75 feet wide, hard surfaced and capable of supporting maximum wheel loading of the aircraft to be used. Runways used for operations during hours of darkness must be equipped with functional runway edge lighting.

Minimum Landing Fuel Reserves

The following fuel quantities have been established as the minimum reserve fuel planned to be on board Company aircraft at the time of landing. Minimum fuel reserves are designed as an absolute minimum and are not intended to be used as a landing fuel target. If a landing is made with less than the specified quantity of fuel on board, the Trip Captain shall submit a written report explaining the use of the reserve specified to the Chief Pilot and the Manager Training and Standards within five working days.

- [aircraft type]: XXXX lbs.
- [aircraft type]: XXXX lbs.

Operating To/From Uncontrolled Airports

The following are recommended operating procedures for operating on or in the vicinity of an uncontrolled airport. When approximately 15 miles out, pilots should ask ATC if there is any conflicting traffic and monitor the ATC frequency for traffic alerts. Approximately ten miles out, pilots shall broadcast, in the blind if necessary, position and intentions on the Common Traffic Advisory Frequency (CTAF) or Local Airport Advisory (LAA). Calls recommended on CTAF or LAA are:
Safety Committee
Prototypical Safety Program Manual

- Ten miles out
- Entering downwind
- Base
- Final
- Exiting the runway.

IFR flight plans should not be canceled until after landing at uncontrolled airports so that search and rescue will be initiated for overdue aircraft. On instrument approaches, it is recommended that pilots broadcast the following on CTAF:

- Departing final approach fix
- On final approach
- Approach completed.

It is the responsibility of the PIC to ensure that the runway is clear. If conditions permit, an approach overhead the airport helps to verify that the runway is clear, the wind direction, the runway in use, and increases the probability of visual acquisition by other aircraft.

When departing from the airport, broadcast departure intentions before taxiing and before taking the runway. Pilots should comply with the departure procedures for the airport including noise abatement procedures. Recommended procedures are:

- Make frequent radio calls. Request any traffic in the vicinity of the airport identify themselves so that you are aware of each other’s presence.

- Turn all exterior lights on. Dim interior lights as much as possible during night operation for better outside visibility.

- BE ALERT. Complete as many checklist items as possible before entering the pattern.

- Call the airport manager or the FBO prior to departing on the trip to inquire about runway conditions, weather, NOTAM, runway lighting, obstacles or any possible hazards.
Review charts prior to flight and note minimum altitudes for terrain clearance.

Airworthiness Determination (Pilots)

The final responsibility for determining airworthiness of the aircraft (FAR 91.7) rests with the PIC. In addition to completing a pre-flight check, the PIC shall thoroughly review the Aircraft Maintenance Log and Deferred Maintenance Log and satisfy himself/herself that the aircraft is in an airworthy condition. These responsibilities include but are not limited to ensuring:

- compliance with all applicable AD’s and mandatory service bulletins.
- that the planned flight or series of flights will not exceed the time remaining for the time/date maintenance requirements as shown on the “Item Due” sticker.
- that all inspection due dates, hour or cycle limits have been carried forward and are not past due.
- that all maintenance discrepancies have been corrected or deferred in accordance with the MEL. All maintenance record entries shall be completed and signed by certified technician approving the aircraft for return to service.
- that the deferred items do not render the aircraft unsuitable for the planned flight or series of flights.
- that all required equipment and documents are on board.

Aircraft Pre-Flight Check

Pre-flight checks are to be accomplished by a pilot in accordance with the type-specific Aircraft Flight Manual.

Upon completion of the pre-flight check, the pilot completing the check shall make an entry in the current Aircraft Maintenance Log.

Use of Minimum Equipment List (MEL)

The FAA requires that all systems, components and equipment must be in operating condition prior to aircraft dispatch unless allowed to be deferred by an FAA-approved MEL. A FAA approved copy of the MEL will be carried on board each Department aircraft. If an aircraft system becomes inoperative away from the home maintenance base, the pilot will enter the discrepancy in the Aircraft Maintenance Log. Any maintenance, operational action or installation of placards required by the MEL must be completed prior to the next flight.
VOR Check

The Trip Captain or his/her designee shall complete, or verify completion of, a VOR check in accordance with FAA regulations. If a VOR check is due, the pilot shall complete the check make an entry in the Aircraft Maintenance Log:

Frost, Snow and Icing

No pilot shall attempt a takeoff if the aircraft has frost, snow or ice adhering to any, windshield, powerplant installation, flight or rate instrument system, wings, control surfaces or other areas that could affect flight characteristics or performance.

Aircraft that are found to have frost, snow or ice accumulations must be de-iced prior to flight in accordance with the aircraft manufacture’s recommended procedures. If existing conditions could cause accumulations to reoccur, the PIC must ensure that the aircraft is deiced as often as necessary based on deicing product specifications and observed conditions. Prior to takeoff, the PIC must determine that there is no accumulation that would affect performance of the aircraft.

Flight must not be attempted into known or forecast icing conditions unless the aircraft deicing/anti-icing systems are fully functional. No Company aircraft shall be flown into known severe icing conditions.

Towing

All towing operations will be performed in accordance with the methods and limitations described in the appropriate sections of the AFM and/or maintenance manual.

Aircraft Refueling Procedures

The Trip Captain is responsible to ensure that fuel is of the proper grade and quality and that the desired amount is placed into the aircraft fuel tanks. The Trip Captain may delegate the fueling of the aircraft but retains the responsibility. The crewmember should verify that the refueling equipment is labeled with the name of the product ordered (Jet A, Jet B, etc.), and is properly positioned and is not under any part of the aircraft that could settle during refueling. Fuel trucks should not be backed up to the aircraft and should be parked so that the truck could be moved away from the aircraft in case of a malfunction or emergency.

Passengers cannot remain onboard the aircraft during refueling unless there is a crewmember present in the cabin and positioned near the cabin door. The main entry door must remain open. No smoking is permitted during refueling.

The fuel truck should be bonded to the aircraft structure at the recommended bonding point and the nozzle ground wire attached before any fuel cap is opened or the nozzle is connected to the single-point refueling system. The crewmember should set up the refueling
control panel unless the person operating the refueler has been determined by the crew member to be competent. When required by aircraft type and/or mission a crewmember shall remain in the vicinity of the aircraft until the refueling has been completed. A flight crewmember shall ensure that the refueling panel and fuel cap(s) are secure and determine that all bonding wires have been disconnected from the aircraft.

If there is any question as to the quality of the fuel or fueling equipment being used, the flight crewmember will request that a sample be taken from the final fuel filter of the refueler and/or from the delivery nozzle being used to refuel the aircraft prior to accepting fuel into the aircraft. Fuel samples should have a clear and bright appearance and have no evidence of free or suspended (cloudy or hazy) water and have no visible particulate matter (dirt, rust, etc.). Fuel that is not clear, clean and free from water should not be accepted.

Cabin Emergency Equipment

Emergency equipment meeting the requirements of FAR 91.513 and passenger briefing cards are carried on Department aircraft. Each crewmember shall be familiar with the location, condition and operation of the emergency equipment carried on board the aircraft.

Survival Equipment Requirements

No flight will be conducted over water that is more than 30 minutes flying time, or 100 nautical miles from the nearest shoreline unless the equipment specified in FAR 91.509 is carried on board the aircraft. Additional equipment may be carried, as necessary, on flights over sparsely populated areas such as the arctic regions, deserts, jungle, etc.

The Trip Captain will ensure that the proper amount and type of equipment is on board prior to departure and that each crewmember is aware of the operation and location of all survival equipment.

Baggage Loading/Storage

Baggage will be placed in designated compartments or placed where it will not block access to aisles or normal/emergency egress routes. Passengers may access hand baggage during cruise flight. Baggage must be secured for takeoff and landing and passengers shall be briefed of this requirement. All baggage must be properly positioned within center of gravity limits and within the load limits for each compartment or area of the cabin. Safety webbing must be used where installed. Cabin baggage, including briefcases, must be properly secured to prevent it from becoming a projectile during takeoff, landing or during in-flight turbulence.

Cabin Announcements/Briefings
Pilots are to keep passengers informed of delays and other important information pertinent to the flight before each takeoff. The PIC shall ensure that all passengers are briefed as required under FAR Part 91, which includes the following:

- Use and operation of seat belts/shoulder harnesses.
- The requirement for seats to be returned the upright position and tables to be placed in the stowed position during takeoff and landing.
- The location and operation of emergency exits.
- The location and operation of survival equipment.
- Use of the Smokeshield respirator devices.
- Use of oxygen.
- Smoking.
- Stowage of loose articles and hand baggage.
- Use of portable electronic devices.

Recorded briefings may be used and supplemented by printed briefing cards. These cards must be carried in a location that is visible and convenient and must contain aircraft specific information.

Prior to flights requiring flotation equipment, pilots shall ensure that all passengers have been briefed on its use.

The aircraft will not take the runway for departure until all passengers are seated with seat belts fastened and loose articles are properly stowed.

Portable Electronic Devices

No person shall operate a personal radio transmitter, television receiver, cellular phone or any other electronic device known to emit electromagnetic or radio frequency emissions that could interfere with the aircraft navigation systems during flight.

Sterile Cockpit

Crewmembers will eliminate all extraneous cockpit conversation that does not apply directly to the operation of the aircraft anytime the aircraft is in motion on the surface, or airborne, while operating below 10,000 feet MSL.
Safety Committee
Prototypical Safety Program Manual

The sterile cockpit environment will also be maintained during climbs and descents when within 1000 feet of reaching an assigned altitude.

Admission to the Cockpit/Jump Seat

No person shall be admitted to the cockpit except as defined herein:

• A crewmember assigned to the flight (PIC, SIC, Maintenance Technician, Flight Attendant).

• A person engaged during flight for the purpose of checking pilot performance for a government agency (FAA Examiner or Designated Pilot Examiner).

• A Department Standardization Pilot, or other person designated by the Department, to provide pilot training or conduct a flight crew performance evaluation.

• Company maintenance technicians or other technical personnel directly involved in maintenance related activities requiring an in-flight evaluation or adjustment.

A passenger may occupy the jump seat (observer’s position) during takeoff, landing and/or cruise flight at the discretion of the PIC. This passenger must also have a cabin seat available in case an emergency situation arises.

Anyone occupying the jump seat for takeoff and/or landing must be thoroughly briefed on the following:

• operation of the jump seat

• use of the oxygen mask

• sterile cockpit procedures

• actions to take in case of an emergency

Operation of Flight Controls

Only Department employees designated as pilots, contract pilots, contract flight training pilots, FAA Pilot Examiner or Designated Pilot Examiner, a qualified manufacturer’s test pilot or a Company designated instructor pilot may manipulate the flight controls of any Company aircraft.

Pilots at Duty Station During Flight
Pilots shall remain in the cockpit at all times during flight except to meet physiological necessities or passenger safety requirements. During take-off, climb, descent, landing and IMC, both pilots shall be seated at their duty stations with seat belts and shoulder harnesses fastened. One pilot shall remain at the controls with his/her seat belt fastened at all times. (See also Crew Member Use of Supplemental Oxygen.)

Crewmember Use of Supplemental Oxygen

Pilots must be familiar with the use of the quick-donning flight deck oxygen masks. When stowed, the oxygen masks must be set to 100% and in a “ready” position.

If it is necessary for one pilot to leave his/her station when operating at flight altitudes above 35,000 feet, the remaining pilot at the controls shall put on and use his/her oxygen mask until the other pilot has returned to his/her station. Each pilot shall ensure that the flight deck oxygen mask provided for his/her use is properly adjusted to provide a good fit and male pilots shall maintain any beard or mustache in a manner that will allow the oxygen mask to properly seal against the face of the wearer.

All flight deck positions, including the jump seat, must be equipped with an operational and suitable oxygen mask when occupied at altitudes above 12,500 feet MSL.

Standardization Program

The Department Standardization Program encompasses the use of Standard Operating Procedures (SOP’s) and Standardization Flights to ensure effective crew coordination. Crew coordination is the effective delegation of responsibility and division of workload among the flight crewmembers. Crew coordination is essential in the safe operation of Department aircraft.

The use of SOP’s, checklists and terminology creates a standardized system whereby the pilots become immediately aware of any departure from the normal sequence of events or normal system operations. The use of these SOP’s will place the flight crew in the best position to recognize potential problems and respond to emergency/abnormal situations in the proper manner.

Flight crews are not authorized to deviate from Department procedures unless the deviation is in the best interest of safety. All such deviations shall be reported to the [Position title] within 24 hours of the occurrence. A constant evaluation process ensures that these procedures are effective and suitable for Department flight operations.

The PIC retains the final authority for the conduct of the flight. Unless already dictated by Department SOP’s, the PIC must clearly establish the pilot flying (PF) and pilot not flying (PNF) responsibilities so that there will be no confusion as to the duties or task assignment.

The PF operates or commands the operation of the flight controls, flight instruments and the autopilot and his/her primary responsibility is to fly the aircraft.

The PNF performs all other cockpit duties including the following:
• In normal flight - Navigates, communicates, programs communication and navigation equipment, monitors the radar and flight and engine instruments, and completes required paperwork and other tasks, as directed by the PF.

• During emergencies or abnormal system operations - Checks instrument indications, reads/accomplishes checklists, performs checks, takes corrective action, as necessary.

All emergency actions taken by the PNF should be validated with the PF and concurrence obtained prior to taking the action. If an apparent error in any flight parameter is detected, the PNF shall immediately notify the PF of the deviation from published procedures, limitations, or air traffic clearance or routing. The PF and the PNF shall coordinate with each other prior to initiating the following:

• A change in aircraft configuration.

• A transferring of aircraft control.

• Selection or change of navigation equipment settings or frequencies.

• Checklist initiation and completion.

• A change in altitude.

Pre-Departure Briefing

The PIC shall conduct a pre-departure briefing prior to each flight. The briefing shall include all crewmembers to enhance team-building and set the tone for the flight.

Use of Checklist

The Department SOP’s are based on the systematic use of checklists to accomplish the required checks (normal, abnormal, emergency etc.). SOP items that are shown in quotation marks are to be stated as written.

Standard Operating Procedure

The following Standard Operating Procedure (SOP) is to be utilized in all routine fixed-wing flight operations conducted by the department. Any deviation from this SOP as dictated by conditions, or circumstances, must be thoroughly briefed by the Pilot Flying and understood by all crewmembers.
Before Starting Engines Check

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-flight check completed.</td>
<td>The cockpit preparation can be completed by either pilot using the Before Starting Engines checklist. However, certain tasks completed by only one pilot should be verified by both pilot crew members prior to starting engines. These tasks are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Completion of the Before Starting Engines checklist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flight Management Systems (FMS) data entries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Navigation system setup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TOLD information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATC clearance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Altitude alert/preselect</td>
<td></td>
</tr>
</tbody>
</table>

Starting Engines Check

A minimum of one person qualified to operate aircraft engines must be seated in a pilot seat when an aircraft engine is started, or running. Engines will be started utilizing the proper checklist procedures. Before starting an engine, the immediate area around the aircraft must be visually checked for potential hazards to ensure a safe start. Pilots should make an effort to have a line service person act as an outside observer during engine starts whenever practical. All engines must be started before commencing taxi.

The ATC clearance should be obtained and reviewed prior to starting engines if practical.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Starting Engines check complete.</td>
<td>Start engines utilizing a flow pattern check.</td>
<td></td>
</tr>
</tbody>
</table>

After Starting Engines Check

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>After engines have been started.</td>
<td>Call, “After Starting Engines check”.</td>
<td></td>
</tr>
</tbody>
</table>
Both pilots complete the After Starting Engines checklist.

Call, “After Starting Engines check complete.”

All engines running and After Starting Engines checklist complete.

Call, “Ready to taxi”. Obtain taxi clearance.

Aircraft cleared to taxi. Call, “Taxi check”.

Taxi Check

Nosewheel steering and braking should be checked as soon as possible during taxi and while speed is very low.

When any Department aircraft is to be moved under its own power, two persons qualified to taxi the aircraft are required to be seated in the pilot seats with seat belts fastened and seats and controls properly adjusted. Operation on crowded ramps and taxiways requires the attention of both pilots. Paperwork and other cockpit duties shall not be accomplished while taxiing in close proximity to other aircraft or obstructions. Both pilots shall maintain maximum possible vigilance. When the aircraft is being maneuvered in close quarters, the pilot not controlling the aircraft will signify proper clearance on his/her side by placing his/her hand on the center of the glareshield with the thumb in a thumb-up signal. This will place the hand signal in the pilot’s peripheral vision and will allow the person taxiing to devote his/her attention to his/her side of the aircraft and the area in front of the aircraft. The aircraft will not be taxied unless both pilots have determined that there is enough clearance to maneuver the aircraft safely. When adequate clearance is in doubt, the aircraft should be towed.

Systems checks should be accomplished so that, at least, one pilot is maintaining vigilance. Checks should be accomplished at times and locations, during taxiing, with the least exposure to a ground mishap and appropriate for verification of system integrity.

It may be necessary for the pilot not flying (PNF) to get the clearance during taxi. If possible, cockpit flow should be managed to avoid this. However, when the PNF is required to copy the clearance during taxi, the pilot flying (PF) must maintain vigilance and care in taxiing. Changes to any clearance/procedure prior to departure shall be reviewed by both pilots with the airplane stopped.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF calls, “Taxi check,”</td>
<td>Both pilots complete Taxi Checklist, in accordance with</td>
<td>Complete checklist.</td>
</tr>
</tbody>
</table>
Safety Committee
Prototypical Safety Program Manual
aircraft type-specific AFM, through takeoff briefing.

Takeoff Briefing

Prior to taking the active runway for takeoff, the PF shall consider (at least) the following items, and brief the PNF, with regard to:

- Special factors influencing this takeoff (wet runway, anti-icing requirements, crosswind, deviations from the norm, etc.).
- Verify the airspeed settings (bugs) and power settings to be used.
- Verify the navigation equipment setup.
- Verify the initial flight clearance (headings, altitudes, etc.).
- Review the emergency return plan.
- PF will complete the briefing by asking “Do you have anything to add?”
- If the PNF has nothing to add, he/she will state “I have nothing to add.”
- If the PNF has questions or comments, they will be addressed before continuing the checklist.

Note: Standard Briefing - Abort for any warning light or reason up to 80 knots. After 80 knots, up to V1, abort for:
- a) Engine fire/failure
- b) Thrust reverser deployment
- c) Aircraft control problem
- d) Any WARNING condition

After V1, continue the takeoff and handle the problem as an airborne emergency. The PNF will silence the aural warning.

Task/Initiation Cue PF PNF

Takeoff briefing completed. Complete Taxi checklist.

Call, “Taxi check complete.”

Before Takeoff Check
Both pilots will review any changes in the ATC clearance prior to initiating the Before Takeoff checklist. All Before Takeoff checklist items must be completed before the takeoff roll commences. This operation is the final check before the flight phase and must be properly completed.

The aircraft parking brake will not be set while the aircraft is on the active runway.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
</table>

Takeoff Procedures

Takeoff power must be set prior to attaining 60 KIAS. Runways that are limited by performance requirements for the aircraft gross weight, or by other factors, will require the use of a specific takeoff procedure, as shown below. Refer to the applicable AFM. The PF must advise the PNF of the procedure that will be utilized.

Takeoff

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
</table>

Takeoff Roll

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 80 KIAS</td>
<td>Maintain directional control</td>
<td>Steady the control yoke</td>
</tr>
</tbody>
</table>
Positive airspeed indication
At 80 KIAS

PNF calls, “80 knots crosschecked”.
Move left hand from nose steering to control yoke and call, “My yoke”. (as applicable to aircraft type)

PF calls, “My yoke”. (as applicable to aircraft type)
At V1
PNF calls, “V1.”
Move right hand to control yoke.

At VR
PNF calls, “Rotate.”
Rotate aircraft to pitch attitude per AFM.

After Takeoff Check

Task/Initiation Cue
At positive rate of climb:
PNF calls, “Positive rate.”

PF
Verify positive rate.
“Gear up.”
Maintain pitch attitude per AFM.

PNF
Call, “Positive Rate.”
Select gear up. Call, Call, “Gear selected up.”
Monitor engine and flight instruments.
Call, “400 feet.”

At 400' AGL.

Task/Initiation Cue
PNF calls, “400 feet”
At final takeoff climb speed (400’ AGL minimum)

PF
Call, “Flaps up.”

PNF
Confirm IAS not less than final takeoff climb speed. Select flaps 0°. Call, “Flaps selected up.”
Monitor and call, “Flaps and gear indicate up.”

PNF calls, “Flaps indicate up.”
Accelerate to normal(or ATC clearance) climb IAS.
Altitude Verification Procedure

The following procedures will normally be used regardless of which pilot is flying:

- The Pilot-Not-Flying sets the altitude and points to the altitude alerter.
- The Pilot-Flying points at the new altitude and verbally acknowledges it.

If there is anything other than total agreement by both pilots during the verification process, ATC is to be contacted immediately to resolve the conflict. Always seek verification of any clearance you do not understand or is understood differently by any crewmember. NEVER resolve a clearance conflict issued by cockpit consensus alone. Do not leave an assigned altitude if there is any question about a newly assigned altitude until it has been verified with ATC.

Altitude Callout Procedure

The PF will verbalize leaving the altitude 1,000 feet prior to an assigned altitude. The callout is to include the altitude vacating and the assigned altitude i.e. “Six thousand for seven thousand” or “Flight level three-zero-zero for two-niner-zero”. After the PF makes this call, the PNF will verify and validate the call by stating “check”. If the PF fails to make the call, the PNF shall initiate the call and the PF shall validate the call.

18,000 Foot Climb Check

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>At or above 18,000 MSL PF or PNF calls, “18,000” feet.</td>
<td>Either PF or PNF call, “18,000 feet.” Call, “18,000 Foot Climb check.”</td>
<td>Complete checklist. Call, “18,000 Foot Climb check complete.”</td>
</tr>
</tbody>
</table>

Note: Both pilots set altimeters. PNF call, “Altimeters set checked”.

Cruise Check

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
</table>
Established at assigned cruise altitude.
PF or PNF calls, “Cruise check.”
Either PF or PNF call, “Cruise check.”
Complete checklist. Call, “Cruise check complete.”

Descent Check

Task/Initiation Cue	PF	PNF

18,000 Foot Descent Check

Task/Initiation Cue	PF	PNF
Below 18,000 MSL: PF or PNF calls, “18,000 feet.” |Either PF or PNF call, “18,000 feet.”| Complete checklist. Call, “18,000 Foot Descent check complete.”

Note: Both pilots set altimeters. PNF call, “Altimeters set and cross-checked”.

Approach and Landing Briefing

The PNF shall have the appropriate navigation and approach charts organized and readily available. The PNF shall obtain the destination weather and the approach in use information and advise the PF. The PNF shall complete the landing data computations (or verify if already computed) and enter or post numbers, as applicable.

Both pilots shall review the information and procedure to be used for the descent and approach. The PF shall brief the PNF of his/her intentions. The briefing should be concise and not be an attempt to memorize the approach procedure. It should include a review of the pertinent information and any special conditions, or procedures, that will be utilized for the approach and landing.

The 4 “M” ‘s should be reviewed as follows:

- MSA.
- Marker altitude.
Safety Committee

Prototypical Safety Program Manual

- Minimum altitude.
- Missed approach procedure.

Setup and use of navigation equipment and/or automation shall be briefed as applicable. If any abnormal conditions occurred during the flight which will have an effect on the intended approach and landing those implications must be thoroughly briefed and understood by both pilots.

- PF will complete the briefing by asking “Do you have anything to add? “
- If the PNF has nothing to add, he/she will state “I have nothing to add.”
- If the PNF has questions or comments, they will be addressed before continuing the checklist.

In-Range Check

Complete the In-Range check when below 10,000 feet MSL and/or within 30 nautical miles of the destination airport.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 10,000 feet MSL and/or within 30 nautical miles of destination airport.</td>
<td>Call, “In-Range check.”</td>
<td>Complete checklist. Call, “In-Range check complete.”</td>
</tr>
</tbody>
</table>

Approach Check

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach Checklist complete.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approach Checklist complete.
Precision Approach (ILS)

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>At initial convergence of Course Deviation Indicator (CDI): When the annunciators indicate course capture:</td>
<td>Call, “Localizer alive.”</td>
<td>Confirm and call, “Localizer alive.”</td>
</tr>
<tr>
<td></td>
<td>Call, “Localizer capture.”</td>
<td>Confirm and call, “Localizer capture.” Set heading bug to initial missed approach heading (as applicable).</td>
</tr>
<tr>
<td>With the first movement of the glideslope indicator:</td>
<td>Call, “Glideslope alive.”</td>
<td>Confirm and call, “Glideslope alive.”</td>
</tr>
</tbody>
</table>

Before Landing Check (Precision Approach)

Landing gear and landing flaps will be selected at or before the final approach fix (FAF). Approach will be stabilized from FAF until landing, or missed approach.

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>One dot from glideslope intercept or approaching the final approach fix.</td>
<td>Call, “Gear down, Before Landing check.”</td>
<td>Select gear down. Call, “Gear selected down.”</td>
</tr>
<tr>
<td></td>
<td>Monitor and call, “Gear down-three green.”</td>
<td></td>
</tr>
<tr>
<td>When Before Landing checklist is completed.</td>
<td></td>
<td>Complete Before Landing check.</td>
</tr>
<tr>
<td>At glideslope capture:</td>
<td>Call, “Glideslope capture”.</td>
<td>Confirm and call, “Glideslope capture”. Set missed approach altitude in altitude alerter.</td>
</tr>
<tr>
<td>1000' above minimum for approach PNF calls, “1000' above minimums.”</td>
<td>Verify altitude. PF call, “Check”</td>
<td>PNF call, “1000' above minimums.”</td>
</tr>
</tbody>
</table>
Safety Committee
Prototypical Safety Program Manual
Landing clearance

Prior to DH, obtain/confirm cleared to land, call, “Cleared to land.”

500' above minimum.

Call, “500' above minimums.”

PNF calls, “500' above minimums.”

Verify altitude. PF call, “Check”

100' above minimum.

Call “Approaching minimums.”

PNF calls, “Approaching minimums.”

Verify altitude. PF call, “Check”

At decision height.

If the runway environment is in sight, call what you see. e.g. “Approach lights, continue.”

When runway is in sight.

Call, “Runway in sight.”

PNF calls, “Runway in sight.”

PF call, “Going visual.”

Confirm going visual call by stating, “Roger, Monitoring instruments.” Monitor flight instruments.

OR

At decision height.

If the runway environment is NOT in sight, call, “Minimums, go-around.”

PNF calls, “Minimums, go-around.”

PF call, “Going around”.

Execute missed approach procedure.

Note: If visual contact is lost beyond the MAP, a go-around is to be announced and executed by the PF.

Before Landing Check (Non-Precision)

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approaching the Final Fix</td>
<td>Call, “Gear down, Before”</td>
<td>Select gear down. Call,</td>
</tr>
<tr>
<td>At FAF</td>
<td>“Gear selected down.” Monitor and call, “Gear down-three green.”</td>
<td></td>
</tr>
<tr>
<td>1000' above minimum for approach.</td>
<td>“Gear selected down.” Monitor and call, “Gear down-three green.”</td>
<td></td>
</tr>
<tr>
<td>Landing clearance</td>
<td>“Gear selected down.” Monitor and call, “Gear down-three green.”</td>
<td></td>
</tr>
<tr>
<td>PNF calls, “1000' above minimums.” 500' above minimum.</td>
<td>“1000' above minimums.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td>PNF calls, “500' above minimums.”</td>
<td>“500' above minimums.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td>100' above minimum.</td>
<td>“500' above minimums.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td>PNF calls, “Approaching minimums.”</td>
<td>“Approaching minimums.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td>At minimum descent altitude.</td>
<td>“Approaching minimums.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td>PNF calls, “Minimums, (time or distance) to go.”</td>
<td>“Minimums, (time or distance) to go.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td>At missed approach point.</td>
<td>“Minimums, (time or distance) to go.” Verify MDA. Call the tower and start the time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the runway environment is in sight, call what you see.</td>
<td></td>
</tr>
</tbody>
</table>
When runway is in sight.

PNF calls, “Runway in sight.”

PF call, “Going visual.”

(Final flap setting should be selected when landing is assured)

Call, “Runway in sight.”

Confirm going visual call by stating, “Roger, Monitoring instruments.” Monitor flight instruments.

OR

At missed approach point.

PNF calls, “Minimums, go-around.”

PF call, “Going around.”

Execute missed approach procedure.

Note: If visual contact is lost beyond the MAP, a go-around is to be announced and executed by the PF.

Visual Approach

Reported weather at the airport must have a ceiling of at least 1000 feet and visibility of at least 3 miles.

Landing flaps will be selected no later than 500 feet AGL. The approach will be stabilized from 500 feet AGL until landing. The stabilized approach requires the aircraft to be established on the desired track, glide path, in landing configuration and with airspeed and sink rate constant.

Approach Deviation Limits (Callouts after passing FAF or 1000 feet AGL)

After passing the FAF or 1000 feet AGL the PNF will call out any warning indications, or deviations, as noted below. The PF will acknowledge with “Correcting”. If the PF does not respond and the deviation continues, the PNF will repeat the call. If the PF still does not respond and/or the deviation remains uncorrected, the PNF will take control of the aircraft following the second failure to respond by the PF. The change of control will be announced by the PNF stating, “My airplane”.

Precision Approach

<table>
<thead>
<tr>
<th>Task/Initiation Cue</th>
<th>PF</th>
<th>PNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dot right or left of localizer</td>
<td>Call, “1 dot right” or “1 dot left”</td>
<td></td>
</tr>
</tbody>
</table>
1 dot above glideslope, anything below glideslope
Call, “one dot high” or “low on glideslope”

Non-Precision Approach

Task/Initiation Cue PF
VOR, LOC Approach:
1 dot right or left of course

PF
Call, “1 dot right” or “1 dot left”

NDB Approach:
±5° right or left of desired bearing. (Maximum deviation allowed ±10°)
Call actual deviation, “__°(right” or “__°(left”

Visual Approach Slope Indicator (VASI)

Task/Initiation Cue PF
Above glidepath or below glidepath

PNF
Call, “Above glidepath” or “Below glidepath”

Approach Speed

Task/Initiation Cue PF
Vref to Vref +10

PF
No calls

Speed greater than Vref + 10 or any speed below Vref
Call actual deviation relative to Vref. Example; “Ref plus 15”, “Ref minus 2”

Vertical Speed

Task/Initiation Cue PF
Sink rate exceeds 1000 feet per minute without corrective action initiated by PF

PNF
Call, “Sink rate.”

Missed Approach Procedure
PF calls, “Going around.” Immediately apply maximum power and rotate to Go-Around pitch attitude.

During pitch attitude change call for flap retraction, as per aircraft AFM. PF call for “Flaps ___°.”

Select requested flap setting. Call, “Flaps ___° selected.”
Monitor and call, “Flaps ___° indicated.”

Positive rate of climb Established

Call, “Positive Rate.”

PNF calls, “Positive rate.” Verify positive rate. Call, “Gear up.”

Select gear up. Call, “Gear selected up.” Monitor and call, “Gear indicated up.”

PNF calls, “Gear Indicated Up.” State initial heading and altitude of missed approach procedure (published or as cleared by ATC).

Verify PF altitude and heading callout. Call, “Check”. Verify that missed approach altitude is set in the altitude alerter. Select the Nav source as directed/briefed by PF (FMS, VOR etc).

Call for “After Takeoff check” when conditions permit. Communicate with ATC, complete After Takeoff check.

Note: The PNFs’ primary responsibility during execution of the missed approach procedure shall be to assist the PF and to monitor the aircraft. ATC communications should be accomplished as soon as practical, but should not interfere with this primary responsibility.

Landing Roll

Aircraft on the ground. Activate spoilers and thrust

“Spoilers deployed, Two reverser(s)”, as applicable. reverser(s) deployed,” as applicable.

At 70 KIAS

Call, “70 knots.”
PNF calls, “70 knots “ Begin stowing of reverser(s) per AFM. Monitor stowing.

After Landing Check

Task/Initiation Cue PF PNF

Shutdown Check

Task/Initiation Cue PF PNF

Post-flight Check (Pilot)

If a post-flight inspection will not be accomplished by Department maintenance personnel after the completion of the last flight of the day, the Trip Captain, or his/her designee, shall conduct a walk-around check of the aircraft, noting any oil or fuel leaks, abnormal wear or damage to the aircraft. Any discrepancies found during this walk-around are to be listed in the Aircraft Maintenance Log. The Trip Captain will notify Maintenance if there is any question as to the airworthiness status of the aircraft.

Flight Crew Debriefings

In order to continuously evaluate and improve Department flight operations procedures and enhance interpersonal skills, crewmembers should conduct post-flight debriefings after each flight. The debriefings should include all crewmembers of the flight, as practical, and be discussed from the self-discovery perspective.

Standardization Flights (Pilots)

Standardization flights will be conducted by Department Standardization Pilots in order to provide a method to ensure that the Program is being followed in day-to-day operations and to constantly evaluate the program. The Standardization Pilot shall use a Standardization Flight Worksheet as an evaluation guide.
Safety Committee

Prototypical Safety Program Manual

Each Department pilot will receive at least one standardization flight at intervals of approximately six months. These intervals shall not exceed eight months. If the pilot is qualified, current, and assigned to more than one type aircraft, the six month standardization flight will alternate between types. The minimum number of standardization flights per 12 month period, per aircraft, shall be one.

Standardization flights may be conducted during normal passenger carrying flights. No abnormal or emergency procedures will be required as part of the flight. These flights will involve routine practices and standard operating procedures described herein and in the Company Pilot’s Handbook for the subject aircraft.

The Standardization Pilot will act as an observer during the flight and will not be considered as an assigned flight crewmember for the purpose of the flight.

Results of Standardization Flights (Pilots)

The Standardization Pilot will use a Company “Pilot-Standardization Flight Worksheet” to conduct the evaluation. (The worksheet will be destroyed at the conclusion of the crew’s debriefing).

Crewmembers that are found to be deficient will be advised of the specific deficiencies during post-flight debriefing unless, in the opinion of the standardization pilot, the deficiency directly effects the operational safety of the flight. If this is deemed to be the case, the standardization pilot will advise the flight crew of the deficiency immediately upon discovery.

In the remote case that the pilot(s) are unwilling or unable to perform their duties in accordance with the FAR, the AFM, the Department SOP’s, or this Manual, they will be advised of this. If the situation cannot be resolved at the local level, to the satisfaction of the Standardization Pilot, the flight will not depart, or if already airborne, will not proceed beyond the next point of landing.

In this event, the Standardization Pilot will contact the [Position title] as soon as practical, for resolution of the situation. The [Position title] will determine the proper course of action to be taken from that point.

Successful completion of a standardization flight will be recorded for each individual on an applicable Standardization Flight Form. These forms will be forwarded to the [Position title] for review, and retained in the employees training file.

Standardization Flights (Flight Attendant)

Flight attendant standardization flights will be conducted by the Lead Flight Attendant, or a person designated by the [Position title], in order to provide a method to ensure that Department policies and procedures are being complied with. Each flight attendant will receive, at least, one standardization flight every twelve months.

Any performance area observed to be unsatisfactory during a standardization flight will be discussed with the crewmember during post-flight debriefing unless, in the opinion of
the evaluator, the deficiency directly effects the operational safety of the flight. If this is
deemed to be the case, the evaluator will advise the crewmember of the deficiency
immediately upon discovery.

In the remote case that the flight attendant is unwilling or unable to perform their
duties in accordance with the Department Policy, the evaluator shall contact the individuals’
supervisor to discuss the situation further.

Successful completion of a standardization flight will be recorded for each individual
on the applicable Standardization Flight Form. This forms will be forwarded to the [Position
title] for review, retained in the employees training file.

International Procedures

Regulatory Compliance on International Flights

When conducting international flights, pilots of Company aircraft must adhere to the
US Federal Aviation Regulations, ICAO rules and the regulations of the countries in which
they land in or over-fly.

Flight crews must be familiar with and comply with relevant laws, regulations and
procedures of the host country where operations are to be conducted. Where differences exist
between the US Federal Aviation Regulations, ICAO rules and foreign regulations, the most
restrictive of these regulations will apply.

Flight regulations for oceanic operations and special use airspace, including flight in
MNPS and RVSM airspace, can be found specifically in Annex 2, ICAO Rules of the Air
and Advisory Circular AC 91-70.

If a deviation in an emergency situation violates local regulations or procedures, the
PIC will notify the appropriate local officials without delay. If required by the state where
the incident occurs, the PIC shall submit a written report on any such violations to the
appropriate authority in that state.

Crew Qualifications and Training

All flight crew members who fly international flights shall attend an International
Procedures course approved by the [Position title] prior to their first international flight.

For a flight crewmember to be considered qualified for international operations that
flight crewmember must be knowledgeable in the following:

1) ICAO operational rules and regulations

2) ICAO measurement standard

3) Use of oceanic flight planning charts

4) Sources and contents of international flight publications
5) Itinerary planning

6) FAA International Flight plan, ICAO Flight plan and flight log preparation

7) Route planning within special use airspace where flights are to be conducted

8) International en route and terminal procedures that may be different from US procedures

9) Long range, air-to-ground communications procedures

10) Structure of special use airspace where operations are to be conducted

11) Air traffic clearances

12) International meteorology, including significant weather charts, prognostic charts, tropopause charts and TAF’s

13) Specific en route navigation procedures for each type of navigation equipment required in special use airspace

14) Emergency procedures, including use of required emergency equipment, search and rescue techniques, navigation equipment failure techniques and communication failure techniques.

15) Proper contingencies for emergencies in special use airspace

16) Wet ditching and water survival procedures.

Required Documents for International Operations

It is the PIC’s sole responsibility to ensure all required documentation is up to date on:

• MNPS/RVSM/RNP-10 Letter of authorization

• Aviation Insurance Policies

• Mexican Insurance Policy

• Noise certificate
Safety Committee

Prototypical Safety Program Manual

- Customs overflight permit

This is in addition to all other documentation required on board the aircraft by FAR and this Manual.

Required Equipment for International Flights

The following equipment is required on all international flights:

- Emergency medical kits

- Survival equipment required for trip (i.e., polar, maritime, act.) as required by FAR 91.509.

- Radio equipment as required by FAR 91.511.

- Equipment as required by the route flown and/or the country overflown.

Trip Planning

All international trip preparation is the responsibility of the Trip Captain. The Trip Captain shall assign flight crewmembers planning duties as he/she see fit. The Trip Captain shall keep all crewmembers informed of the status of the flight planning process. The use of outside planning and weather agencies will be used at the Trip Captain’s discretion.

Permits and Entry Requirements

When operating Department aircraft across international boarders or in international airspace, the Trip Captain will insure that the crew and passengers are in full compliance with each country’s passport, visa, aircraft entry and health requirements prior to entry. Confirmation of overflight or of landing must be obtained in writing prior to the planned flight.

International Navigational Charts

Prior to departure on an international flight, the Trip Captain will ensure that an up to date coverage of all required navigation charts, including SID’s, en route, STAR’s, terminal and hi and lo altitude charts are on the aircraft. The International Flight Information Manual and the FAA International Notices to Airmen will be available prior to flight.

Trip Briefing
As with all domestic flights, prior to an international flight the Trip Captain will have a preflight briefing with the flight crew. In addition to a standard briefing, the crew will also discuss:

1) itinerary
2) required permits
3) all required documents
4) destination and alternate topography features
5) destination approach facilities
6) possible alternate airports
7) CFIT risk assessment
8) handling arrangements
9) passenger and crew accommodations
10) security need and arrangements
11) inspection of required equipment
12) status of the international checklist

NOTAM’s, Track Messages and Flight Plans

Prior to any international flight the Trip Captain will assure that international NOTAM’s and Track messages are requested from and received from approved Flight Planning and Weather Services, International Flight Service Stations (IFSS) or airport meteorological stations (MET).

A copy of each flight plan will be on the aircraft prior to flight.